

Aufgabe 1 (GOP 2006, WDH)

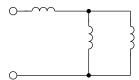
Folgende Schaltung 2. Grades soll untersucht werden. $\alpha \in \mathbb{R}$ ist ein freier, einheitenloser Parameter.

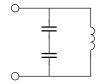
- 1. Mit $\alpha < 0$ enthält die Schaltung einen negativen Widerstand. Wie kann man diesen schaltungstechnisch realisieren?
- 2. Welche Größen stellen die Zustandsgrößen der Schaltung dar und welche Zweitormatrix muss zum Aufstellen der Differentialgleichung berechnet werden?
- 3. Stelle nun die benötigte Zweitormatrix, sowie die Zustandsmatrix \mathbf{A} des Differentialgleichungssystems auf.
- 4. Für eine spezielle Dimensionierung der Schaltung und eine geeignete Normierung ergibt sich für die Zustandsmatrix

$$\mathbf{A} = \begin{pmatrix} -\frac{1}{\alpha+1} & \frac{\alpha}{\alpha+1} \\ -\frac{2\alpha}{\alpha+1} & -1 - \frac{2\alpha}{\alpha+1} \end{pmatrix}.$$

Verwende diese Zustandsmatrix für den Rest der Aufgabe und setze $\alpha = -\frac{3}{4}$ und berechne für die resultierende Systemmatrix die Eigenwerte und Eigenvektoren.

- 5. Gebe den Gleichgewichtspunkt \mathbf{x}_{GGP} an und skizziere das Phasenportrait unter Verwendung der Ergebnisse der vorherigen Teilaufgabe. Um welche Art von Phasenportait handelt es sich?
- 6. Berechnet man die Eigenwerte der gegebenen Systemmatrix allgemein in Abhängigkeit von α , so ergibt sich


$$\lambda_1 < 0, \forall \alpha, \qquad \lambda_2 = -\frac{2\alpha + 1}{1 + \alpha}.$$


Untersuche die Stabilität der Schaltung in Abhängigkeit von $\alpha \in \mathbb{R} \setminus \{-1\}$.

7. Ist die Schaltung mit der gegebenen Systemmatrix als harmonischer Oszillator verwendbar? Begründe deine Antwort.

Aufgabe 2

Folgende drei Abbildungen zeigen jeweils ein Netzwerk aus drei reaktiven Elementen. Welchen Grad besitzt jeweils die vorliegende Schaltung?

